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Abstract—Six Cr-spinel grains from NWA 6077 brachinite-like and NWA 725 winonaite
achondrites have been studied by single-crystal X-ray diffraction and structural refinement.
From a chemical point of view, spinels from NWA 6077 show Cr/(Cr + Al) (i.e., Cr#) and
Mg/(Mg + Fe’ ") (i.e., Mg#) values similar to other brachinites, while the Cr# of NWA 725
is lower than that of literature winonaites. Spinels from NWA 6077 and NWA 725
meteorites show similar cell edges, while the oxygen positional parameter is rather different
being about 0.2629 for NWA 6077 and 0.2622 for NWA 725. Considering both parameters,
NWA 725 shows structural features that are close to some terrestrial spinel occurrences as
in komatiites, kimberlites, or included in diamonds; those from NWA 6077 show values that
have no terrestrial analogs. Olivine-chromite closure temperature ranges from ~737 to
~765° C for NWA 725, being similar to that of literature winonaites and ~846 to ~884° C
for NWA 6077. The logfO, ranges from —19.8 to —20.5 and —17.0 to —17.9 for the two
meteorites, respectively. The u values for terrestrial samples can give information about the
cooling history of the samples. For the extraterrestrial samples, it seems that it can give
information about the cooling only for spinels where it is lower than 0.2625. For higher
values, it appears related only to the chemistry of the spinels.

INTRODUCTION

Chromite is a common oxide accessory phase in
terrestrial, Martian, and lunar mafic and ultramafic
rocks. In terrestrial and Martian systems, Cr usually
occurs as Cr’" stabilizing Cr-spinel, whereas in more
reducing environments, there could be a substantial
amount of Cr’" (Sutton et al. 1993), for example,
delaying the crystallization of chromite from lunar melts
(Schreiber and Haskin 1976; Seifert and Ringwood
1988). Chromite is usually present also in ordinary
chondrites, where it has been studied since the 1960s to
find relations between the Fe, Mg content of chromites
to that of olivines in the H, L, and LL groups of
equilibrated chondrites (Bunch et al. 1967). Moreover,
chromite is an accessory phase also in nonchondritic
meteorites such as winonaites, pallasites, brachinites,
ureilites, diogenites, and ecucrites (Mittlefehldt et al.
1998). In particular, chromites are present in most
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main-group pallasites with Cr#, i.e., Cr/(Cr + Al), in
the range 0.84-0.97, and Mg#, i.e., Mg/(Mg + Fe*"), in
the range 0.24-0.36. Chromites are rare in most
ureilites, and in higher-Fo ureilites, they are absent due
to the formation at lower fO,, out of the range of Cr’*
stability. Recently, Goodrich et al. (2014) studied
several occurrences of chromite in ureilites and found
that it occurs as subhedral to anhedral grains
comparable in size (~30 um to 1 mm) and/or textural
setting to the major silicates in respective rock,
indicating that it is a primary phase. The most FeO-rich
chromites in these samples are the ones with the most
primitive compositions preserved (Mg# = 0.45-0.40;
Cr# varying from 0.65 to 0.72 among samples). In
diogenites and eucrites, the Cr# ranges from 0.5 to 1,
while Mg# is below 0.29 (Mittlefehldt et al. [1998] and
references therein). According to Day et al. (2012),
chromite occurs interstitially and as inclusions in
brachinites  showing two  dominant  chromite
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compositions. There are low-Al chromites (Cr# = 0.82—
0.84) and high Al compositions (Cr# = 0.71-0.74).
Typically they have low Fe,Os.

Chromium-bearing spinels have been utilized
extensively as a petrogenetic indicator because Cr-spinel
composition is a rich source of information on the origin
and evolution of parent magma composition (Irvine
1967; Dick and Bullen 1984; Lenaz et al. 2000; Barnes
and Roeder 2001; Kamenetsky et al. 2001). More
recently several workers studied the relationships between
mineral chemistry, structural parameters (essentially cell
edge ay and oxygen positional parameter u, i.e., the
position of the oxygen along the cell diagonal), and
tectonic setting (Della Giusta et al. 1986; Princivalle et al.
1989; Carbonin et al. 1999; Carraro 2003; Bosi et al.
2004; Lenaz et al. 2004a; Uchida et al. 2005).

This study presents structural and chemical data of
six Cr-bearing spinels from the NWA 6077 brachinite-
like and NWA 725 and winonaite achondrites. The Cr/
(Cr + Al) (Cr#) and the Mg/(Mg + Fe*™) (Mg#) of
spinels from meteorites is rather different from that of
terrestrial samples. We selected one winonaite
achondrite because the spinels in winonaites show the
highest Cr# registered for natural spinels (Bunch et al.
1970; Takeda et al. 2000; Benedix et al. 2005). Spinels
from brachinites show Cr# and Mg# values (Keil 2014)
that are rather close to some terrestrial occurrences for
which X-ray single-crystal data are available (Lenaz
et al. 2004a, 2007, 2009, 2012). Moreover, their
chemistry is rather similar to that of some spinels from
chondrite already studied by Lenaz et al. (2015). Here,
we compile the first integrated crystal-chemical data set
of natural Cr-spinels in these meteorites and discuss
them in comparison with previously analyzed chondrite
spinels (Lenaz et al. 2015) and terrestrial analogs in
order to verify if the cooling history of spinels, as
supposed by the structural parameter u, can be
determined for extraterrestrial spinels and be used
coupled with estimated closure temperatures. Moreover,
oxygen fugacities will be calculated for these two
meteorites and compared with meteorite analogs.

MATERIALS AND BACKGROUND

According to Garvie (2012), NWA 6077 is classified
as an achondrite meteorite (ungrouped, brachinite-like)
with an olivine-rich (Fazgs.307) assemblage with
protogranular (possibly cumulate) texture exhibiting
triple-junction grain boundaries. Additional minerals
include orthopyroxene (Fs>4.1.245W05 1.5), clinopyroxene
(Wo044.0.43.5FS9.4.100),  altered  kamacite, chromite,
chlorapatite, Ni-bearing troilite, and/or pyrrhotite.
Brachinites and brachinite-like achondrites can broadly
be defined as olivine-rich rocks (modal olivine 68-95%)
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that, using a terrestrial terminology, can be described as
wehrlites and dunites. They contain Ca-rich pyroxene
and accessory phases of plagioclase, orthopyroxene,
chromite, sulfide, metal, and phosphates. NWA 6077
experienced some minor terrestrial weathering, resulting
in partial alteration of primary metals, as well as veining
within fractures by calcite, clay minerals, and iron
hydroxides. It is considered a brachinite-like meteorite
because it shares similarities with brachinites but
probably originated from a different parent body. New
isotopic data by Sanborn et al. (2016) show how the
e3Cr equal to 0.21 + 0.04 of chromite fractions
distinguishes this meteorite from the typical brachinite.
Recent work determining the isotopic composition for O,
Ca, Ti, Ni, Mo, and Ru showed that there are similarities
in O and Ni between NWA 5400, the paired sample
NWA 5363, and Earth, while Ca, Ti, Mo, and Ru are
resolvable from Earth so that the true composition of the
source reservoir of NWA 5400 is still an open question.

The NWA 725 meteorite is, according to Grossman
and Zipfel (2001), an acapulcoite with olivine (Fag ),
orthopyroxene (WogFs7 5), and clinopyroxene
(WoyusEnsg o Fs3 1), but Greenwood et al. (2012) on the
basis of its oxygen isotope composition ascribed it to
winonaites. According to Benedix et al. (1998),
winonaites have mineral compositions, mineralogy, and
oxygen isotopic compositions distinct from primitive
achondrite groups other than silicate inclusions in IAB
and ITICD irons but lacking the metallic matrices of the
latter and consist mostly of silicates. These authors
suggested that winonaites formed from a chondritic
precursor material with different mineral and oxygen
isotopic compositions with respect to known chondrites.
Extensive heating caused metamorphism and partial
melting of both Fe,Ni-FeS and silicate material.
Recrystallization followed impact brecciation with
consequent cooling that mixed lithologies with different
thermal histories and metamorphism.

METHODS

The meteorites are cut to an appropriate size,
typically 1-4 g, and treated in an ultrasonic bath,
washed, and dried. The cleaned meteorites are placed in
an HF-resistant plastic net sitting in a l-liter plastic
beaker so that the bottom of the net is approximately
2 cm above the bottom of the beaker. One part of
water and three parts of HF (40%) are poured into the
beaker, and after 3-7 days, the meteorites are
completely disintegrated and appear as a dark sediment
layer at the bottom of the beaker. The sample is pH-
neutralized by means of water decanting and then
sieved through a 32-pum sieve. The residual material is
divided into two size fractions: >63 um and 32-63 um,
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respectively. After drying, the sample is submerged in
95% ethanol and representative spinel grains are picked
under a light microscope.

X-ray diffraction data for the six chromite grains
analyzed were recorded on an automated KUMA-KM4
(K-geometry) diffractometer, using MoKa radiation,
monochromatized by a flat graphite crystal. Twenty-
four equivalent reflections of the (12 8 4) peak, at about
80° 20, were accurately centered at both sides of 26, and
the o, peak barycenter was used for cell parameter
determination. Data collection was made, according to
Della Giusta et al. (1996), up to 50° 0 in the ®-20 scan
mode, scan width 1.8° 20, counting time from 20 to 50 s
depending on the peak standard deviation. Corrections
for absorption and background were performed
according to North et al. (1968). Structural refinement
using the SHELX-97 program (Sheldrick 2008) was
carried out against Fo’p in the Fd-3-m space group
(with origin at —3 m), since no evidence of different
symmetry appeared. Scattering factors were taken from
Prince (2004) and Tokonami (1965). Neutral scattering
curves, Mg versus Fe in the T site, and Cr versus Al in
the M site were assigned, with the constraints of full site
occupancy and equal displacement parameters. Oxygen
ionization varies among different grains in order to
reach the best fit between structural refinement and
chemical analyses and to obtain the best value for all
conventional agreement factors. Results are in Table 1.

After X-ray data collection, the same crystals used
for X-ray data collection were mounted on glass slides,
polished, and carbon coated for electron microprobe
analyses on a CAMECA-SX50 microprobe at 1GG-
CNR, Padua, operating at 15 kV and 15 nA. A 20-s
counting time was used for both peak and total
background. Synthetic MgCr,0O4 and FeCr,O4 spinels
(Lenaz et al. 2004b) have been used for Mg, Cr, and Fe
determination; Al,O5 for Al; MnTiO5 for Ti, Mn; NiO
for Ni; and sphalerite for Zn. Up to 15 spot analyses
were performed on each crystal to verify zoning and
possible nonhomogeneity in composition. Raw data
were reduced by PAP-type correction software provided
by CAMECA. Results are in Table 1.

Several different procedures may be adopted to
determine cation distribution, and very satisfactory
results have recently been obtained by combining data
from single-crystal X-ray structural refinements and
electron  microprobe  analyses. This  procedure
simultaneously takes into account both structural and
chemical data and reproduces the observed parameters
by optimizing cation distributions. Differences between
measured and calculated parameters are minimized by a
function F(X) taking in consideration different
parameters as the observed quantity and their standard
deviations, cation fractions in T and M sites, unit cell

1765

and oxygen parameter, mean atomic number of T and
M ssites, atomic proportions given by microprobe
analyses, and constraints imposed by crystal chemistry
(total charges and occupancies of T and M sites). The
cation distribution for the present samples has been
achieved by using the Carbonin et al. (1996) and
Lavina et al. (2002) model, later summarized in Lenaz
et al. (2015). This model yields cation distribution by
minimizing the weighted differences between observed
crystal-chemical data and data calculated from site
atomic fractions. This cation distribution in the
tetrahedral (T) and octahedral (M) sites must be
consistent with the assumptions that the mean atomic
number (m.a.n.) corresponds to:

m.a.n.T = Z VXN, (1)
m.a.n.M = ZIVX,-N,- 2

where "VX; and V'X; are chemical species in T and M,
respectively, and N is their atomic number. The site
bond length arises from a linear contribution of each
species to the tetrahedral (T-O) and octahedral (M-O)
coordination distances so that:

T-0=>) "x"p (3)
M-0=> Vx"p, 4)

where 'VD; and V'D; are the cation-to-oxygen bond
distances of each cation in tetrahedral and octahedral
coordination, respectively.

Summarizing, site atomic fractions 'YX, and V'X;
must satisfy the above equations but must also total the
atomic proportions from chemical analyses and obey
three crystal-chemical constraints: occupancies of T and
M sites and formal valence so that 'VX; and Y'X; may
be calculated by minimizing the following sum of
residuals:

I (0j— Ci(X)\?
F(X)) —HZ_,_]( 5 ) (5)
where O; are the observed quantities with their standard
deviation ;. O; are the four observed crystallographic
parameters (a, u, and m.a.n. of T and M sites) and the
chemical proportions for a total of n. C(X, are the
corresponding quantities calculated by means of
variable cation fractions X; Results are shown in
Table 1.
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Table 1. Results of crystal structure refinements, chemical analyses, cation distribution, olivine-chromite closure
temperature, and oxygen fugacities of studied chromite.

Sample NWA725A NWAT725B NWA725C NWAG6077A NWA6077B NWA6077C
a 8.3386 (1) 8.3362 (1) 8.3433 (4) 8.3340 (2) 8.3331 (2) 8.3352 (1)
u 0.2622 (1) 0.2622 (1) 0.2623 (1) 0.2630 (1) 0.26292 (9) 0.26290 (9)
m.a.n.T 18.9 (3) 18.9 (3) 19.6 (4) 22.2 (8) 23.1 (3) 22.8 (6)
m.a.n.M 22.7 (5) 22.6 (5) 23.2 (7) 20.8 (1.1) 22.0 (3) 21.4 (8)
U M) 0.0039 (1) 0.0047 (1) 0.0043 (1) 0.0036 (3) 0.0042 (1) 0.0037 (2)
U (T) 0.0062 (2) 0.0066 (2) 0.0063 (3) 0.0068 (3) 0.0072 (2) 0.0069 (2)
U (O) 0.0056 (2) 0.0066 (3) 0.0058 (3) 0.0069 (4) 0.0060 (2) 0.0064 (4)
N. refl. 168 139 139 151 155 150
R1 2.43 2.08 2.17 2.88 2.26 2.12
wR2 5.12 4.42 4.92 6.11 491 4.99
GooF 1.245 1.086 1.190 1.173 1.317 1.186
MgO 9.9 (1) 9.7 (1) 9.69 (9) 44 (2) 4.7 (1) 4.57 (5)
Al,O3 4.9 (2) 5.8 (2) 5.5(Q2) 8.16 (4) 8.12 (7) 8.25(9)
TiO, 1.02 (4) 0.84 (4) 1.01 (3) 1.44 (4) 1.47 (3) 1.44 (4)
Cr,03 65.9 (4) 65.0 (3) 65.3 (5) 57.6 (5) 57.8 (4) 57.6 (3)
MnO 1.91 (6) 222 2.3(Q2) 0.44 (4) 0.43 (5) 0.47 (3)
FeO 16.5 (2) 16.7 (3) 16.9 (2) 27.8 (4) 27.6 (2) 27.6 (3)
NiO” 0.01 (1) 0.00 (1) 0.01 (1) 0.01 (1) 0.01 (2) 0.01 (2)
ZnO" 0.01 (2) 0.01 (1) 0.01 (2) 0.16 (9) 0.15 (5) 0.12 (8)
Sum 100.2 100.2 100.6 100.1 100.3 100.1
T Site
Mg 0.461 (5) 0.489 (5) 0.452 (5) 0.222 (8) 0.214 (5) 0.237 (3)
Al 0.026 (3) 0.019 (2) 0.015 (2) 0.0020 (2) 0.0102 (5) 0.0070 (5)
Mn 0.055 (2) 0.060 (6) 0.065 (5) 0.013 (1) 0.012 (2) 0.0140 (9)
Fe?* 0.459 (5) 0.432 (6) 0.468 (6) 0.763 (9) 0.753 (6) 0.727 (7)
Fe™* 0.0000 (1) 0.006 (3) 0.015 (4)
Zn 0.004 (1)
M Site
Mg 0.039 (2) 0.0007 (2) 0.034 (1) 0.007 (2) 0.028 (2) 0.0004 (1)
Al 0.169 (7) 0.221 (8) 0.200 (9) 0.333 (3) 0.321 (3) 0.330 (4)
Ti 0.026 (1) 0.021 (1) 0.0255 (8) 0.038 (1) 0.0384 (8) 0.027 (1)
Cr 1.756 (8) 1.720 (9) 1.733 (6) 1.582 (9) 1.578 (7) 1.584 (7)
Fe?* 0.0095 (7) 0.038 (2) 0.0084 (7) 0.027 (2) 0.0215 (9) 0.046 (2)
Fe3* 0.012 (9) 0.012 (5) 0.011 (4)
Cr# 0.90 0.88 0.89 0.82 0.83 0.82
Mg# 0.52 0.51 0.51 0.23 0.24 0.24
FX) 0.190 0.235 0.063 0.336 0.361 0.288
OI-Sp Therm 765.1 736.8 741.7 845.6 883.8 863.8
10, —19.80 —20.55 —-20.41 —17.87 —17.05 —17.47

"Ni and, occasionally, Zn not present in cation distribution because of the deviation higher than 2c.

a: cell parameter (A); u: oxygen positional parameter; m.a.n.T and M: mean atomic number; U(M), U(T), U(O): displacement parameters for M
site, T site, and O; N. Refl.: number of unique reflections (Sheldrick 2008); R1 all (%): residual index for all reflections (Sheldrick 2008); wR2
(%): weighted residual index for reflections with I > 4c (Sheldrick 2008); GooF: goodness of fit (Sheldrick 2008). Space Group: Fd-3 m. Origin
fixed at -3 m. Z = 8. Reciprocal space range: —19 <h <19; 0 <k <19; 0 <1< 19. F(x): minimization factor, which takes into account the
mean of square differences between calculated and observed parameters, divided by their standard deviations. Ol-sp Therm: olivine-spinel
closure temperature (Ballhaus et al. 1991); fO,: oxygen fugacity (O’Neill 1987). Estimated standard deviations are in brackets.

RESULTS AND DISCUSSION

In spinel, the anions form a nearly cubic close-
packed array, stacked parallel to the (111) planes, and
the cations fill a part of the tetrahedral (T) and
octahedral (M) interstices available in the framework
(Fig. 1). The oxygen atom is linked to three octahedral

cations and one tetrahedral cation lying on opposite
sides of the oxygen layer, respectively, to form a
trigonal pyramid. Displacement of the oxygen atom
along the cube diagonal [111] causes the oxygen layers
in the spinel structure to be slightly puckered. In this
way, variations in the oxygen positional parameter, so-
called u, correspond to displacements of the oxygen
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Ternary axis

O Oxygen

O 4 coordinated cation
@ 6 coordinated cation

Fig. 1. Spinel structure (modified after Lindsley 1976).

atoms along the cube diagonal, and reflect adjustments
to the relative effective radii of cations in the
tetrahedral and octahedral sites. An increase in u
corresponds to a relative enlargement of the tetrahedral
coordination polyhedra and a compensating decrease in
the octahedra (Lindsley 1976) (Fig. 1). Many studies
that integrate measurements of crystal structural
parameters and mineral chemical analyses have been
previously performed on Cr-spinels from mantle
nodules (Della Giusta et al. 1986; Princivalle et al. 1989,
2014; Carraro 2003; Uchida et al. 2005; Nédli et al.
2008; Lenaz et al. 2014c, 2017), ophiolites (Bosi et al.
2004; Derbyshire et al. 2013; Lenaz et al. 2014a, 2014b),
Alpine peridotites (Lenaz et al. 2010, 2016), layered
mafic intrusions (e.g., Bushveld, Rum, and Stillwater
Complexes; Lenaz et al. 2007, 2011, 2012), kimberlites
and spinels included in diamonds (Lenaz et al. 2009),
komatiites (Lenaz et al. 2004a), and oxidized
occurrences in sedimentary environments (Carbonin
et al. 1999; Lenaz et al. 2002) to better understand Cr-
spinel petrogenesis, oxidation mechanisms, and cooling
rates. The only study taking into account the structural
parameters of chromite from the extraterrestrial
environment is by Lenaz et al. (2015). There the authors
studied some chromites from H-chondrites and an
acapulcoite and from a fossil Osterplana L6 chondrite.
From a structural point of view, Cr-spinels from
both NWA 725 and NWA 6077 have very similar cell
edges ranging from 8.3331 (2) to 8.3433 (4) A, while the
oxygen positional parameter is quite different, being
0.2622 (1) to 0.2623 (1) for NWA 725 spinels and
0.2629 (1) to 0.2630 (1) for NWA 6077 (Table 1;
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Fig. 2). Lenaz et al. (2015) found that spinels from H6
meteorites present a longer cell edge (8.3480-8.3501 A),
while the others show values similar to those of the
spinels studied here. The oxygen positional parameter is
between 0.2624 and 0.2630.

The spinels of NWA 725 are richer in Cr,O3z, MgO,
and MnO with respect to those of NWA 6077. In both
cases, Cr,O; is the most abundant oxide (about 65 wt%
and about 57 wt%, respectively), followed by FeO (about
17% versus 28%). Then, in NWA 725, there follows
MgO (~10%), AlLO;3 (~5%), MnO (~2%), and TiO,
(~1%). The NWA 6077 spinels also contain Al,O3 (~8%),
MgO (~4%), TiO, (~1.5%), MnO (~0.4%), and ZnO
(~0.15%) (Table 1). According to stoichiometry, trivalent
iron has been found only in NWA 6077 spinels in very
low amounts (0.4-1.01 wt%) (Table 1). According to our
chemical analyses, it appears that there is no zoning and
that differences in chemical compositions of the spinels
within the meteorite are very small.

According to O’Neill and Navrotsky (1984), the
large excess octahedral crystal field stabilization energy
of Cr’" (A CFSEgerrer) is about 160 kJ mol™") should
ensure that Cr solely enters the M site. This means that,
in the studied cases, ~87% and ~80% of the octahedral
sites occupied by cations of spinels in NWA 725 and
NWA 6077, respectively, are filled by Cr. Even titanium
can be assumed to occupy solely this site, so that only a
minor amount of other elements could enter this site. In
the studied spinels, these cations are Al and Fe’ ", with
only a minor amount of divalent cations present in M.
Consequently, cation assignment, taking in account
structural and chemical parameters, shows an ordered
distribution (Table 1).

Primitive achondrites are generally considered to
represent meteorites that have experienced high-grade
metamorphism, which in some cases resulted in partial
melting. They fill the gap between chondrites and
differentiated achondrites and represent mantle material
derived from asteroids with metal cores (Benedix et al.
1998; Weisberg et al. 2006; Floss et al. 2008; Touboul
et al.  2009). Primitive achondrites can retain
compositional, isotopic, and textural features of their
precursor materials (McCoy et al. 2006) while, texturally,
ranging from metamorphosed- and anatectic-chondritic
materials, such as winonaites (Benedix et al. 1998) and
acapulcoites (e.g., Mittlefehldt et al. 1996), to lithologies
that suffered partial melting, melt extraction, or are
themselves partial melt products, such as lodranites (e.g.,
Mittlefehldt et al. 1996; McCoy et al. 1997), ureilites
(e.g., Warren et al. 2006; Goodrich et al. 2007),
brachinites (e.g., Mittlefehldt et al. 2003), and silicate
inclusions within TAB and IIICD iron meteorites (e.g.,
McCoy et al. 1993; Choi et al. 1995). When considering
the chemistry of the most abundant oxides by using the
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Fig. 2. Oxygen positional parameter, u versus cell edge, a. Black circle: NWA 6077; black square: NWA 725; black diamond: H6
chondrite (Lenaz et al. 2015); black X: acapulcoite (Lenaz et al. 2015); black triangle: detrital meteoritic spinels (GOL spinels in Lenaz
et al. 2015); open triangle: chromite in kimberlites and included in diamonds (Lenaz et al. 2009); open circle: chromites in komatiites
(Lenaz et al. 2004a); open diamond: chromites in layered intrusions (Lenaz et al. 2007); open square: Archean occurrences (Rollinson
et al. 2017; Lenaz, unpublished data). In the inset, the oxygen positional parameter, u versus cell edge, for synthetic series. Open
triangle: MgA1,04-FeAl,O4 (Andreozzi and Lucchesi 2002); open diamond: FeAl,O4-FeCr,04 (Lenaz and Skogby 2013); open circle:
MgCr,04-FeCr,0y spinels (Lenaz et al. 2004b); asterisks: MgCr,04-MgFe,O, spinels (Lenaz et al. 2006); open square: MgAl,Oy-
MgFe,0, spinels (Nakatsuka et al. 2004); black circle: extraterrestrial occurrences (this study and Lenaz et al. 2015).

Cr# versus Mg# diagram, terrestrial and extraterrestrial
Cr-spinels show a distinct behavior, the extraterrestrial
ones being usually enriched in Cr and Fe with respect to
the terrestrial, apart from very few occurrences. In such a
context, it is interesting to notice how NWA 725 spinels
fall in the same field as spinels included in diamonds,
kimberlites, and komatiites, i.e., spinels originating from
great depths in the mantle. The NWA 725 spinels differ
from spinels in other winonaites (Bunch et al. 1970;
Takeda et al. 2000; Benedix et al. 2005) (Fig. 3). The field
of brachinites shows different values with Cr# ranging
between 0.72 and 0.86 and Mg# in the range 0.18-0.33. In
particular, NWA 6077 spinels show Cr# values similar to
those of ALH 84025 and Brachina (Keil 2014), while
EET99402, Hughes026, NWA 1500, NWA 3151, and
NWA 4969 spinels have lower Cr# values. Chondritic

spinels analyzed by Lenaz et al. (2015) show a Cr#
between 0.85 and 0.87 and Mg# in the range 0.11-0.24, so
that they differ slightly from the field of brachinites.

It is interesting to note that NWA 725 and NWA
6077 spinels show similar cell edges but rather different
u values (Fig. 2). According to Lenaz et al. (2010, 2011,
2012) the cell edge is usually related to the Cr# or to
the Cr + Fe’* content, as can be seen in Fig. 4. Small
differences in the cell edge, as suggested by Lenaz et al.
(2015), are possibly due to exchange of Cr for Al and
Mg for Fe’" (inset in Fig. 2). The oxygen positional
parameter is a consequence of the cations allocated in
the different T and M sites and, according to some
authors (Della Giusta et al. 1986; Princivalle et al.
1989), this can reflect the cooling history of the crystal.
In fact, a rapid cooling history creates disorder with
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(Mittlefehldt 1994); open triangle: eucrites (Bunch and Keil 1971; Lovering 1975; Christophe Michel-Levy et al. 1987,
Mittlefehldt and Lindstrom 1993; Yamaguchi et al. 1994; Buchanan and Reid 1996); gray square: winonaites (Bunch et al. 1970;
Takeda et al. 2000; Benedix et al. 2005); open square: acapulcoites and lodranites (Mittlefehldt et al. 1996); black circle: H and L
chondrites (Lenaz et al. 2015). Fields are for terrestrial occurrences. Field 1: mantle xenoliths, ophiolites, and Alpine peridotites
(Basso et al. 1984; Della Giusta et al. 1986; Princivalle et al. 1989, 2014; Carraro 2003; Bosi et al. 2004; Uchida et al. 2005;
Lenaz et al. 2010, 2014a, 2014b, 2014c, 2016, 2017; Derbyshire et al. 2013; Perinelli et al. 2014); Field 2: layered complexes
(Lenaz et al. 2007, 2012); Field 3: spinels included in diamonds, kimberlites, and komatiites (Lenaz et al. 2004a, 2009, 2013). For
the terrestrial fields, we used only Cr-spinels for whom structural studies are also available.

trivalent cations such as Al and/or Fe’* (Parisi et al.
[2014] among others) in the T site, while divalent
cations Mg and Fe?" in the M site. A slow cooling rate
should establish an ordered situation with trivalent
cations in M site and divalent in T site. This fact has
been very useful in the study of spinels from mantle

xenoliths where the Cr content is limited, and there is a
large possibility of exchanges between Mg and Al
(Princivalle et al. 1989, 2014; Carraro 2003; Nédli et al.
2008; Lenaz et al. 2014c). Contrary to many other
winonaites, the piece of NWA 725 from which our
analyzed spinels originate shows a clear chondrule
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occurrences are represented in black symbols as in Fig. 3.
Open circle: terrestrial occurrences (Della Giusta et al. 1986;
Princivalle et al. 1989; Carraro 2003; Lenaz et al. 2004a, 2007,
2009, 2010, 2012; Uchida et al. 2005).

structure. This may be independent evidence that NWA
725 retains signatures of a slow cooling at significant
depths in the parent body.

But what happens when there is a higher Cr
content? Is it still possible to think about a distribution
of Mg-Al related to the cooling history or is there a
chemical control on the oxygen positional parameter? In
Fig. 5, we compare the behavior of Cr/(Cr + Al), Mg/
(Mg + Fe*"), and Fe*"/(Fe’* + Al + Cr) versus the
oxygen positional parameter.

By comparing Cr/(Cr + Al) versus u, it is possible
to recognize three different behaviors. The first is
represented by terrestrial and extraterrestrial spinels
with very high Cr#. They display an almost flat pattern
with limited Cr# variations and a large span of u
values. The second is represented by an inverse “trend”
of terrestrial spinels where large variations of Cr# and u
values are present. The third one shows the behavior of
mantle xenolith spinels and is represented by a cloud
distribution of both Cr# and u.

When considering Mg/(Mg + Fe*") versus u, there
are no trends shown by spinels from mantle xenoliths
and other terrestrial sources. For extraterrestrial spinels,
there are two different situations. Spinels with u values
smaller than 0.2625 show a large variation of Mg#
values (0.1-0.5), while those with u longer than 0.2625
have a more limited Mg# variation (0.1-0.25). As
regards the Fe'"/(Fe*" + Al + Cr) versus u, it is not
possible to find out trends; anyway, only few
extraterrestrial spinels show the presence of Fe’ " .

These circumstances indicate that for spinels from
mantle xenoliths, there is no relation between Cr# and
Meg# versus the oxygen positional parameter so that the
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Fe’ " J(Fe*™ + Al + Cr) versus oxygen positional parameter, u.
Black circle: extraterrestrial occurrences (this study and Lenaz
et al. 2015); open circle: spinels from komatiites, kimberlites,
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open square: terrestrial mantle xenoliths (Della Giusta et al.
1986; Princivalle et al. 1989; Carraro 2003; Uchida et al.
2005). Lines in the top figure are a guide for the eye.

last values are effectively governed by the cooling history
of the host rock. For the other terrestrial occurrences, it
seems that there could be a chemical control on the u
parameter by Cr#. For extraterrestrial spinels, there are
two possibilities. For spinels with Cr# in the range 0.81—
0.87 and Mg# 0.1-0.20, displacement of cations among
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the sites is very limited due to the high amount of Cr and
Fe, so maybe a coupled control by both Mg# and Cr#
should be invoked. For spinels with limited Cr#
variations (0.87-0.9) and large Mg# (0.1-0.5), there may
be a control on the oxygen positional parameter given by
Mg#, even if a clear trend is not present, but possibly, or
more probably, some control is also exerted by the
cooling history of the host rock.

To provide a better constrained model on the
environmental conditions experienced by the two
meteorites studied, we calculated the closure temperatures
for the olivine-chromite pairs by using the Ballhaus et al.
(1991) thermometer, by assuming a pressure set at 1 bar,
that according to Benedix et al. (2005) is a reasonable
assumption for the interior of bodies up to 100 km in
radius. Previous studies on winonaites and silicate-
bearing IAB irons showed a closure temperature for
olivine-chromite pairs ranging from about 590° C to
about 700° C with oxygen fugacities ranging 2.3-3.2 log
units below the iron-wustite buffer by using the Sack and
Ghiorso (1991) thermometer. Ganguly et al. (2013),
however, noticed that for some H chondrites, there were
differences between the temperatures calculated with the
Sack and Ghiorso (1991) or the Ballhaus et al. (1991)
thermometers with the last usually lower than the first.
Moreover, they argued that there could be some problems
with the OI-Spl thermometer even if, especially the one by
Ballhaus et al. (1991), is widely used, due to some
possible resetting. We recalculated the temperatures and
oxygen fugacities of the winonaites and silicate-bearing
IAB by Benedix et al. (2005) and found that the
temperatures are in the range 697-840° C (slightly higher
than those calculated with the Sack and Ghiorso
thermometer). Oxygen fugacities calculated by using the
O’Neill (1987) oxybarometry are between —18.0 and
—21.7. Our calculations show a temperature in the range
737-765° C (Ballhaus et al. [1991] thermometer) and a
logfO, (O’Neill [1987] oxybarometer) in the range —19.8
to —20.5 for the NWA 725 (Fig. 6). The here studied
winonaites and those studied by Benedix et al. (2005) fall
more or less on the same line, slightly higher than the IW
buffer.

Cr-spinels from NWA 725 differ from those of
other winonaites mainly in term of Cr#, while the
olivine-chromite pair thermometer registers similar
closure temperature. It is interesting that both chemistry
and structure of the spinels from NWA 725 resemble
spinels from terrestrial komatiites, kimberlites, or
spinels included in diamonds.

NWA 6077 shows temperatures between 846 and
884° C. For this meteorite, the logfO, is in the range
—17.0 to —17.9 just above the iron-wustite buffer similarly
to the brachinites studied by Shearer et al. (2010) and
those reviewed in Keil (2014). Notably the majority of the
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Fig. 6. Log fO, versus closure temperatures (°C). Black
square: NWA 725 (this study); black circle: NWA 6077 (this
study); open square: winonaites (Benedix et al. 2005); open
circle: brachinites (Keil 2014).

spinels from brachinites fall in a range of temperatures
that is close to that of chondrites, while NWA 6077
indicates higher temperatures comparable with those of
spinels from pallasites, but lower than some spinels from
brachinites reviewed in Keil (2014). In Fig. 7 are reported
the closure temperatures versus olivine fayalite content of
different chondrites and achondrites. It is possible to see
how most of the winonaites and brachinites fall in the field
representing the average OI-Spl equilibration temperature
of chondrites as seen in Sack and Ghiorso (1991). The
here studied brachinites as well as some other brachinites,
pallasites, and winonaites from literature show a higher
equilibration temperature (Fig. 7).

CONCLUSIONS

Single-crystal X-ray diffraction and structural
refinement show the differences between the studied
spinels from brachinite-like and winonaite achondrites
and spinels from chondrites previously analyzed (Lenaz
et al. 2015).

Spinels from the NWA 725 winonaite present a cell
edge in the range 8.3362 (1) to 8.3433 (4) A and an oxygen
positional parameter in the range 0.2622 (1) to 0.2623 (1).
Estimated  closure  temperatures  (olivine—chromite
thermometer by Ballhaus et al. 1991) are between 737 and
765° C with a logfO, in the range —19.8 to —20.5
(oxybarometer by O’Neill 1987), i.e., just above the iron-
wustite buffer. They differ from other winonaite spinels in
having a lower Cr#, while showing similar olivine—chromite
closure temperatures and oxygen fugacities.

Spinels from brachinite-like NWA 6077 present a cell
edge in the range 8.3331 (2) to 8.3352 (1) A and an
oxygen positional parameter in the range 0.2629 (1) to
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Fig. 7. Closure temperatures (°C) versus olivine fayalite content.
Black square: NWA 725 (this study); black circle: NWA 6077
(this study); open square: winonaites (Benedix et al. 2005); open
circle: brachinites (Keil 2014). Horizontal continuous and dashed
lines indicate the respective mean and 1o range of olivine-spinel
Fe-Mg exchange temperatures calculated for ordinary chondrites
from chromite and olivine data reported in Sack and Ghiorso
(1991). Fields for pallasites, olivine diogenites, H, L, and LL
chondrites after Sack and Ghiorso (1991).

0.2630 (1). Estimated closure temperatures are between
846 and 884° C with a logfO, in the range —17.0 to
—17.9, i.e., just above the iron-wustite buffer. They are
similar to low-Al spinels from brachinites in Cr# and
Mg#. The range of closure temperatures is very variable
for brachinites.

The u values for terrestrial samples can give
information about the cooling history of the samples,
for the extraterrestrial samples it seems that the u values
can give information about the cooling only for spinels
where its value is lower than 0.2625. For higher values,
it seems related only to the chemistry of the spinels.
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